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DIVISION S-7—NOTES

	15N in the mineral soil changes very little over timeLONG-TERM PATTERNS IN FOREST-
because of the large pool size and long residence time,

FLOOR NITROGEN-15 NATURAL the steady-state assumption in the forest floor has not
been established.ABUNDANCE AT HUBBARD BROOK, NH

The stable N isotope ratio (15N to 14N) is useful in
L. H. Pardo,* H. F. Hemond, J. P. Montoya, and ecological research because it records the net effects of

T. G. Siccama N transformations on the soil (Högberg, 1997). Microbi-
ally mediated processes discriminate against the heavier

Abstract 15N, creating products that are depleted in 15N and leav-
ing the source pool enriched in 15N (Mariotti et al., 1981;To test the hypothesis that �15N in the forest floor remains constant

over time, we measured �15N in forest-floor samples from 1969, 1978, Shearer and Kohl, 1986). If the depleted product is
1987, and 1992 at the reference watershed, W6, at the Hubbard Brook exported from the soil (via uptake or leaching after
Experimental Forest (HBEF), New Hampshire. The �15N of the Oa nitrification or gaseous losses after denitrification), the
horizon increased significantly (P � 0.05) from 3.00‰ in 1969 to remaining soil becomes enriched in 15N (Létolle, 1980;
4.89‰ in 1978, then decreased significantly to 3.81‰ in 1987 and Shearer and Kohl, 1986; Nadelhoffer and Fry, 1994).
remained near that level in 1992. In the Oie horizon, �15N increased

The fractionation during nitrification, ≈15 to 36‰significantly from 0.17‰ in 1969 to 0.91‰ in 1978 and remained at
(Högberg, 1997), is significantly higher than that duringthe higher level for the later years. Thus �15N was not at steady state
mineralization (≈1‰; Högberg, 1997; Kendall, 1998).in either the Oie or Oa horizon for the period 1969 to 1992 in the

Because litter 	15N values are consistently lower thanreference watershed. These data suggest that even relatively short-
term disruptions of the N cycle (either by anthropogenic or natural soil values, litterfall inputs tend to lower the 	15N of
disturbance) can alter the �15N in the forest floor, and should be the forest floor (Fry, 1991; Nadelhoffer and Fry, 1994;
considered in evaluating natural abundance data. Högberg, 1997). Likewise, because soil is typically en-

riched relative to the atmosphere, N fixation also de-
creases soil 	15N. Nitrogen fixation incorporates atmo-
spheric N, which has a 	15N of 0‰, into plant materialNatural abundance of 15N has been used to help
and subsequently into soil with a fractionation that typi-evaluate N cycling and N losses (Johanisson and
cally ranges from �1 to �1‰ (Shearer and Kohl, 1986).Högberg, 1994; Austin and Vitousek, 1998; Emmett et

Other N fluxes may either deplete or enrich soil 15N;al., 1998), to compare plant species patterns of N uptake
these include deposition and immobilization. The 	15N(Nadelhoffer et al., 1996), and to compare land-use his-
of ammonium and nitrate in deposition varies consider-tory (Piccolo et al., 1994). An underlying assumption
ably, the former from �14 to 9‰ (Hoering, 1957; Freyer,that soil 	15N is at steady state is made in many studies,
1978; Paerl and Fogel, 1994), and the latter from �7 toincluding laboratory experiments evaluating the change
6‰ (Hübner, 1986; Garten, 1992; Kendall, 1998; Pardoin soil 	15N in response to mineralization and nitrifica-
et al., 1998). At the HBEF, the 	15N of precipitationtion (Nadelhoffer and Fry, 1988), comparisons of a N
nitrate is �2‰ (Pardo, unpublished data, 1996–1998);deposition gradient in the NITREX study (Emmett et
	15N has not been measured for ammonium. Ammoniumal., 1998), and models (Shearer et al., 1974; Hobbie et
deposition may be more enriched (Hoering, 1957; Nade-al., 1999). Although it is reasonable to assume that the
lhoffer et al., 1999) or less enriched (Freyer, 1978; Gar-
ten, 1992) in 	15N than nitrate deposition. The effect of
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were chosen from the original pits in W6 in a stratified-randomand given the small amount of deposition relative to
manner. The 1969 and 1978 archived samples were collectedthe soil N pool, the net effect of N deposition would
from Oi, Oe, and Oa horizons. In 1987 and 1992, the upperprobably be a negligible decrease in soil 	15N. Few stud-
horizons were combined (Oie), and the Oa horizon was sam-ies have evaluated the 15N fractionation that occurs dur-
pled as in previous years. Samples were collected using a 10ing N immobilization in the forest floor. Reported values by 10 cm template in 1969 (Gosz et al., 1976) and a 15 by 15

for fractionation during abiotic and biotic immobiliza- cm template in subsequent years (Yanai et al., 1999).
tion are �2‰ (Nadelhoffer and Fry, 1994). Before 1981, the forest-floor horizons were designated L,

To evaluate whether 	15N is at steady state in the F, and H (Federer, 1982) on the basis of visual determination
forest floor, we obtained archived forest-floor samples of the stage of decomposition of organic matter. More recently
from four sampling dates between 1969 and 1992 at (Soil Conservation Service, 1981) the forest-floor horizons

were designated Oi, Oe, and Oa on the basis of percentagethe HBEF. The forest floor of a mature second-growth
of rubbed fiber content. This semiquantitative method forforest is described as being at steady state—a condition
separating the horizons is useful in the laboratory, but doesin which N inputs are balanced by N outputs (Covington,
not alter the visual horizon separation method used in the1981). Measurements of the forest-floor N pool at the
field at this site (Federer, 1982). Therefore, for this study, LHBEF in 1977 and 1987 demonstrated no detectable is considered equivalent to Oi, F to Oe, and H to the Oa

change in pool size over that period (Woontner, 1990). horizon. The one exception is the set of Oa (H) horizon sam-
We hypothesized that 	15N in the forest floor, like N ples that were collected in 1969. In that study, because Gosz
concentration and pool size, was constant from 1969 et al. (1976) had made an effort to collect pure Oa horizon
to 1992. material, the samples did not include the lower and transitional

portion of the Oa horizon where mineral content is higher.
The result of this sampling approach is that the values obtainedMaterials and Methods
for loss on ignition (LOI) indicate a higher organic matterSite Description content for the 1969 Oa horizon samples than for Oa horizon
samples collected in other years (Yanai et al., 1999).This study was conducted on Watershed 6 (W6), the refer-

To compare the Oie horizon data from 1987 and 1992 withence watershed at the HBEF in the White Mountains of New
the Oi and Oe horizon data from 1969 and 1978, it was neces-Hampshire (46�56
N, 71�45
W). The HBEF is a 3160-ha north-
sary to calculate a weighted 	15N value for the Oie for the twoern hardwood forest representative of much of the northeast-
earlier years. Based on the 1969 measurements of Gosz et al.ern USA in stand age and disturbance history. The region
(1976), the N mass fraction of the Oi horizon was 15% and thatwas settled by Europeans in the late 1800s and selectively
of the Oe horizon was 85% of the total N in the Oie horizon.logged from about 1900 to 1917 (Whittaker et al., 1974). The

dominant tree species are sugar maple (Acer saccharum
Marsh.), American beech (Fagus grandifolia Ehrh.), and yel- Sample Preparation and Analysis
low birch (Betula alleghaniensis Britton), with red spruce (Pi-

Samples were pulverized in a shatterbox (SPEX Chemicalcea rubens Sarg.) and Balsam fir (Abies balsamea L. Mill.) at
and Sample Prep, model 8500, Metuchen, NJ), oven driedupper elevations. The bedrock is medium- to coarse-grain
at 65�C, and loaded into tin capsules for N-isotope analysis.sillimanite schist of the Rangeley Formation. Soils are Typic,
Isotopic analyses were performed using a Dumas combustionAquic, and Lithic Haplorthods of the Tunbridge (coarse-
system in continuous-flow mode (Carlo Erba, Milan, Italy)loamy, isotic, frigid Typic Haplorthods), Lyman (loamy, isotic,
followed by a VG Prism mass spectrometer (Laboratory 1:frigid, Lithic Haplorthods) Berkshire (coarse-loamy, isotic,
Harvard University) or using a Finnigan Delta-S mass spec-frigid Typic Haplorthods) Sunapee (coarse-loamy, isotic,
trometer (Laboratory 2: Boston University Stable Isotopefrigid, Aquic Haplorthods) series, with minor inclusions of
Laboratory). We report all isotope data as 	15N values, whichinceptisols of the Pillsbury (coarse-loamy, mixed, active, acid,
represent the per mil (‰) difference between the isotopicfrigid Aeric Epiquepts) series, with little clay and a sandy
composition of the sample and that of atmospheric dinitrogen:loam texture (Lawrence et al., 1986; Johnson, 1991). Soils are

generally acidic, with mineral soil pH values �4.5, and are
	15N � [(Rsample/Rstandard) � 1] � 1000 [1]≈60 cm deep (Johnson, 1991), with a 3- to 15-cm forest floor

(Likens et al., 1977; Huntington et al., 1988).
where Rsample is the sample isotope ratio (15N/14N), and RstandardMean annual atmospheric N deposition was 492 mol ha�1

is 15N/14N for atmospheric N2, or 0.003 676 5.yr�1 in bulk deposition and mean annual streamwater nitrate
Because samples were analyzed on two different instru-flux was 200 mol ha�1 yr�1 for the period 1964 to 1992 (Likens

ments, we made thorough comparisons to ensure that theand Bormann, 1995).
measurements were equivalent. Approximately 10% of theNitrogen fixation at the HBEF is ≈36 mol ha�1 yr�1

samples were analyzed in triplicate. The standard deviation(Roskoski, 1980) and is negligible relative to plant uptake and
of the triplicates was 0.13‰ at Laboratory 1, and 0.11‰ atinternal N cycling. Denitrification is negligible at the HBEF
Laboratory 2. The precision of the analysis for peptone stan-(�100 mol ha�1 yr�1; Melillo et al., 1983). Nitrogen concentra-
dards in the N mass range of most of the samples was �0.15‰tion is 2.06% in the Oie horizon and 1.36% in the Oa horizon
(SD) at Laboratory 1 and �0.21‰ at Laboratory 2. Apple(Huntington et al., 1988). The N pool is 32 kmol ha�1 in the
leaves from the National Institute of Standards and Technol-Oie horizon and 62 kmol ha�1 in the Oa horizon (Huntington
ogy (Standard Reference Material #1515) were run at Labora-et al., 1988). The residence time for N in the O horizon is 12
tory 2 only, and had a standard deviation of 0.20‰ and ato 15 yr (Gosz et al., 1976).
mean of 0.35‰.

To verify the accuracy of the 15N analysis at the two labora-Sample Collection tories, we compared the mean values of peptone standards
and of 25 samples that were run in both laboratories. TheForest-floor samples were obtained from material at the

Hubbard Brook Sample Archive (Veen et al., 1994); 20 pits difference in peptone standard means between Laboratory 1
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Fig. 1. Natural abundance of 15N in the forest floor of the reference
watershed (W6) at the Hubbard Brook Experimental Forest. Natu- Fig. 2. Nitrate bulk deposition inputs and streamwater outputs for
ral abundance of 15N for the Oa horizon is shown with filled trian- the reference watershed (W6) at the Hubbard Brook Experimental
gles, for the Oe horizon with open circles, for the Oi horizon with Forest. Annual inputs of nitrate in bulk deposition (dotted line)
open squares, and for the Oie horizon with filled circles. Calculated, and outputs of streamwater nitrate (solid line) for the reference
mass-weighted mean values for the Oie horizon in 1969 and 1978 watershed at Hubbard Brook Experimental Forest are shown for
are shown with filled squares (see Materials and Methods section water years (June to May) from 1964 to 1992, after Likens and
for calculation methods). Means within a horizon (Oa or Oie) Bormann (1995).
associated with the same letter are not significantly different. Bars
represent standard error (n � 20).

Oa horizon for 1969 and 1978, we found no correlation
between LOI and 	15N. This suggests that the increaseand Laboratory 2 was 0.12‰ and the mean difference for the
in 	15N we observed was not an artifact of the different25 test samples was 0.01‰. These differences were considered
sampling methods.negligible since they were not greater than the precision of

analysis.

DiscussionStatistical Analysis
The increase in 	15N in both the Oie and Oa horizonsThe effects of time and horizon were tested using ANOVA

follows a period from 1969 to 1976 of elevated stream-and compared using the Student-Newman-Keuls statistic at
water nitrate loss from the W6 (Likens and Bormann,the P � 0.05 level (Montgomery, 1991). All statistical analyses

were conducted using SAS (SAS Institute, 1988). 1995; Fig. 2). During this period, the streamwater flux
ranged from 275 to 550 mol ha�1 yr�1 compared with
the mean of 200 mol ha�1 yr�1. Several scenarios haveResults been proposed to explain these elevated streamwater
nitrate losses (Goodale, 1999): (i) elevated N depositionThe 	15N of the Oa horizon increased from 3.00‰ in

1969 to 4.89‰ in 1978 (Fig. 1); then decreased to 3.81‰ (Likens and Bormann, 1995); (ii) a defoliating insect
outbreak and a hailstorm in late summer 1969, whichin 1987 and remained near that level in 1992. The 	15N

in the Oa horizon in 1978 was significantly higher than caused a significant loss of green foliage (Bormann and
Likens, 1979); (iii) soil frost (Likens and Bormann,in all other years; there were no other significant differ-

ences (P � 0.05). 1995); and (iv) climatic factors including temperature
and precipitation patterns (Goodale, 1999). Of theseThe calculated 	15N for the Oie horizon was 0.17‰

in 1969; it increased to 0.91‰ in 1978 (Fig. 1) and re- explanations, the last explanation best accounts for simi-
lar, synchronous patterns of elevated N loss throughoutmained at the higher level for the later years (1.49‰ in

1987 and 1.06‰ in 1992). The 	15N in 1969 was signifi- the region (Goodale, 1999). Indeed, the PnET model
accurately simulates the period of N loss when actualcantly lower than in all other years; there were no other

significant differences (P � 0.05). temperature and precipitation patterns are input to the
model (Aber and Driscoll, 1997).To evaluate whether the difference between the 1969

and 1978 	15N in the Oa horizon was driven by low 	15N One scenario that would explain both the increase in
nitrate loss and the observed increase in 	15N in the Oavalues in 1969 caused by a different sampling method,

we assessed the relationship between 	15N and LOI. horizon would be a period of increased nitrification.
Other possible explanations for the increase in 	15N inLoss on ignition was higher for the Oa horizon samples

in 1969 than in other years; samples with a higher LOI the Oa horizon in 1978 include: (i) an increase in denitri-
fication, or (ii) an increase in the amount and 	15N ofcontain less mineral soil. 	15N is lower in the organic

horizons than in the mineral soil (Fry, 1991; Nadelhoffer ammonium in atmospheric deposition retained by the
forest floor. However, neither of these explains theand Fry, 1994). However, in a pooled dataset from the
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streamwater nitrate pattern (Fig. 2). Moreover, even can alter 	15N and should be considered in evaluating
natural abundance observations. Finally, these stableassuming complete retention of atmospherically depos-
isotope data provide some information about a puzzlingited ammonium with the highest reported 	15N value,
period in N dynamics at the HBEF (1969–1976). Goo-an increase in forest-floor 	15N of the magnitude mea-
dale (1999) suggests that the period of elevated N lossessured in 9 yr would not have been possible. Streamwater
was caused by climatic factors including temperaturenitrate losses decreased after the mid 1970s, and 	15N
and precipitation patterns that occurred throughout thein the Oa horizon returned to its 1969 value.
region. While the data from this study neither supportNitrogen cycling in the Oie horizon differs from that
nor refute this explanation, they do suggest that nitrifica-in the Oa horizon because of large inputs of
tion increased during the period of high nitrate losses.aboveground litter and significant immobilization of N

in the Oie horizon compared with the Oa horizon (Aber
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